Part Number Hot Search : 
LF200 GH60N60 R2201247 MX7582T G1H10 30U3945 MCR16 AR22B1
Product Description
Full Text Search
 

To Download IRF520VPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94819
IRF520VPBF
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated Optimized for SMPS Applications Lead-Free
Advanced HEXFET(R) Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
HEXFET(R) Power MOSFET
D
VDSS = 100V RDS(on) = 0.165
G S
ID = 9.6A
Description
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
9.6 6.8 37 44 0.29 20 9.2 4.4 7.0 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V A mJ V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
--- 0.50 ---
Max.
3.4 --- 62
Units
C/W
www.irf.com
1
11/5/03
IRF520VPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy
Min. 100 --- --- 2.0 1.9 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.165 VGS = 10V, ID = 5.5A 4.0 V VDS = VGS, ID = 250A --- S VDS = 50V, ID = 5.5A 25 VDS = 100V, VGS = 0V A 250 VDS = 80V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V 22 ID = 9.2A 5.2 nC VDS = 80V 7.0 VGS = 10V, See Fig. 6 and 13 --- VDD = 50V --- ID = 9.2A ns --- RG = 18 --- VGS = 10V, See Fig. 10 Between lead, 4.5 --- 6mm (0.25in.) nH G from package 7.5 --- and center of die contact 560 --- VGS = 0V 81 --- VDS = 25V 10 --- pF = 1.0MHz, See Fig. 5 150 44 mJ IAS = 9.2A, L = 1.0mH
Typ. --- 0.12 --- --- --- --- --- --- --- --- --- --- 6.9 23 30 24
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol --- --- 9.6 showing the A G integral reverse 37 --- --- S p-n junction diode. --- --- 1.2 V TJ = 25C, IS = 9.2A, VGS = 0V --- 83 120 ns TJ = 25C, IF = 9.2A --- 220 330 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) ISD 9.2A, di/dt 360A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents operation outside rated limits. This is a calculated value limited to TJ = 175C .
Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25C, L = 1.0mH RG = 25, IAS = 9.2A, VGS=10V (See Figure 12)
2
www.irf.com
IRF520VPBF
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
10
4.5V
4.5V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
1
20s PULSE WIDTH TJ = 175 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.5
I D , Drain-to-Source Current (A)
TJ = 25 C
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 9.2A
3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0
TJ = 175 C
10
1 4.0
V DS = 50V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0
VGS = 10V
20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF520VPBF
1000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + C ds gd
20
ID = 9.2A VDS = 80V VDS = 50V VDS = 20V
VGS , Gate-to-Source Voltage (V)
800
16
C, Capacitance(pF)
600
Ciss
12
400
8
200
Coss Crss
1 10 100
4
0
0
FOR TEST CIRCUIT SEE FIGURE 13
0 4 8 12 16 20 24
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on)
TJ = 175 C
10
ID, Drain-to-Source Current (A)
10 100sec
1
1 Tc = 25C Tj = 175C Single Pulse 1 10
1msec
TJ = 25 C
10msec
0.1 0.4
V GS = 0 V
0.6 0.8 1.0 1.2 1.4 1.6
0.1
100
1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF520VPBF
10.0
VDS
8.0
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
-VDD
6.0
VGS
Pulse Width 1 s Duty Factor 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS 90%
0.0
25
50
75
100
125
150
175
TC , Case Temperature ( C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1
0.1
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF520VPBF
15V
EAS , Single Pulse Avalanche Energy (mJ)
80
TOP
60
VDS
L
DRIVER
BOTTOM
ID 3.8A 6.5A 9.2A
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
40
0.01
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
VGS
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRF520VPBF
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
+ +
-
RG VGS
* dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET(R) power MOSFETs
www.irf.com
7
IRF520VPBF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- EMITTER 3- SOURCE 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED O N WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIO NAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER
Note: "P" in assembly line position indicates "Lead-Free"
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF520VPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X